Any theory of quantum gravity must ultimately be connected to observations.
This demand is difficult to be met due to the high energies at which we expect
the quantum nature of gravity to become manifest. Here we study, how viable
quantum gravity proposals can be restricted by investigating the interplay of
gravitational and matter degrees of freedom. Specifically we demand that a
valid quantum theory of gravity must allow for the existence of light (compared
to the Planck scale) fermions, since we observe these in our universe. Within
the effective theory framework, we can thus show that UV completions for
gravity are restricted, regardless of the details of the microscopic theory.
Specialising to asymptotically safe quantum gravity, we find indications that
universes with light fermions are favoured within this UV completion for
gravity.Comment: 4 pages, based on a talk given at Loops '11, Madrid, to appear in
Journal of Physics: Conference Series (JPCS