Interactions cellules satellites gliales-propriocepteurs dans les ganglions rachidiens dorsaux

Abstract

Les neurones propriocepteurs sont nécessaires au contrôle du mouvement et à la locomotion. Ils connectent les fuseaux musculaires et les tendons aux motoneurones de la moelle épinière pour informer le système nerveux central de l’état d’élongation et de contraction des muscles. Leurs corps cellulaires sont localisés dans les ganglions rachidiens dorsaux (GRD), où ils sont intimement entourés de cellules gliales GFAP-positives appelées cellules satellites gliales (CSG). Comme les astrocytes du système nerveux central, les CSG expriment à leur surface des récepteurs couplés aux protéines Gq (Gq RCPG) qui peuvent être activés par les neurotransmetteurs libérés par les corps cellulaires de neurones sensoriels du GRD. Les corps cellulaires des neurones sensoriels expriment aussi un certain nombre de récepteurs et transmetteurs. Ces caractéristiques, ainsi que la proximité physique entre les CSG et les neurones sensoriels a permis d’émettre l’hypothèse que les deux types cellulaires sont capables de communiquer. De récentes données de la littérature suggèrent que les CSG et les neurones sensoriels responsables de la détection de la douleur sont capables de dialoguer. Cependant, à notre connaissance, aucune donnée n’a permis jusqu’à présent de démontrer une interaction entre les CSG et les neurones propriocepteurs. Dans cette étude, nous avons émis l’hypothèse que l’activation des Gq RCPG des CSG permet la modulation de l’activité des propriocepteurs. Pour tester cette hypothèse, nous avons utilisé des approches techniques complémentaires (imagerie calcique bi-photonique, immunohistochimie, biochimie et analyses comportementales) combinées à un outil chemogénétique puissant basé sur la technologie DREADD afin d’activer sélectivement la voie de signalisation Gq RCPG dans les CSG. Nous avons démontré dans une préparation de GRD intacte que les CSG sont capables de moduler l’activité des propriocepteurs via une signalisation purinergique. Pour tester la pertinence de cette communication, nous avons réalisé des expériences de comportement sensorimoteur et mis en évidence que l’activation des cellules gliales GFAP-positives induit des déficits sensorimoteurs. Déterminer si la modulation des propriocepteurs par les CSG affecte la transmission sensorimotrice a de profondes implications pour la compréhension du système sensorimoteur et de ses dérèglements.Proprioceptive neurons (one’s own neurons) are necessary for controlling motor control and locomotion. They arise from muscle spindles and tendons and synapse onto ventral horn motoneurons to deliver information about the length and contraction of muscles. Proprioceptor somata reside within the dorsal root ganglia (DRG) and are tightly enwrapped in a thin sheath of GFAP-expressing glial cells, called satellite glial cells (SGCs). Interestingly, SGCs express a number of Gq protein- coupled receptors (Gq GPCRs), which can be activated by neurotransmitters released by sensory neuron somata. Sensory neuron somata also express a number of receptors and transmitters. Both the expression of receptors and the close contact between SGCs and sensory neurons led to the hypothesis that these two cell types communicate. There is emerging evidence that SGCs and nociceptive sensory neuron (pain-sensing neurons) somata can communicate. Furthermore, to date, there is no study conducted on SGC-proprioceptor interaction. We hypothesized that SGC Gq GPCR signaling induces the release of neuroactive molecules from SGCs, leading to the modulation of proprioceptor activity. The main goal of this project has been to test this hypothesis using complementary technical approaches (2-photon Ca2+ imaging, immunohistochemistry, biochemistry and behavior) combined with a powerful chemogenetic DREADD-based tool to activate SGC Gq GPCR activity. We have demonstrated ex vivo that SGCs modulate proprioceptive neuron activity through a purinergic pathway. In order to test the physiological relevance of this discovery in vivo, we performed sensorimotor behavioral experiments and have shown that activating GFAP-expressing glial cells induces sensorimotor deficits. Determining whether SGC-induced proprioceptor activity has profound implications in the understanding of sensorimotor functions in health and diseases

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 26/02/2020