Nanosized carriers for hydrophobic compounds based on mesoporous silica: synthesis and adsorption properties

Abstract

© 2019, Springer Science+Business Media, Inc. MCM-41 type mesoporous silica particles were obtained using a template method in an alkaline medium and cetyltrimethylammonium bromide as a matrix. The structural and adsorption characteristics of the mesoporous material were studied by dynamic light scattering, scanning electron microscopy, low-temperature adsorption—desorption of nitrogen, IR spectroscopy, and simultaneous thermal analysis. It was shown that the obtained mesoporous material possesses high porosity with the specific pore volume in excess of 1 cm3 g−1. It was established that the size of silica particles does not exceed 200 nm, which is a value acceptable for the penetration of drugs through cell membranes. The optimal compositions of aqueous dispersions of MCM-41 with minimal sedimentation processes were determined. A drug (indomethacin) was encapsulated into the silica pores using the precipitation method at various temperatures (40 and 60 °C), the quantitative parameters of loading efficiency were calculated. The infl uence of temperature on the encapsulation ability was demonstrated

    Similar works