Local Electronic Structure in AlN Studied by Single-Crystal ²⁷Al and ¹⁴N NMR and DFT Calculations

Abstract

Both the chemical shift and quadrupole coupling tensors for 14 N and 27 Al in the wurtzite structure of aluminum nitride have been determined to high precision by single-crystal NMR spectroscopy. A homoepitaxially grown AlN single crystal with known morphology was used, which allowed for optical alignment of the crystal on the goniometer axis. From the analysis of the rotation patterns of 14 N ( I=1 ) and 27 Al ( I=5/2 ), the quadrupolar coupling constants were determined to χ(14N)=(8.19±0.02) kHz, and χ(27Al)=(1.914±0.001) MHz. The chemical shift parameters obtained from the data fit were δiso=−(292.6±0.6) ppm and δΔ=−(1.9±1.1) ppm for 14 N, and (after correcting for the second-order quadrupolar shift) δiso=(113.6±0.3) ppm and δΔ=(12.7±0.6) ppm for 27 Al. DFT calculations of the NMR parameters for non-optimized crystal geometries of AlN generally did not match the experimental values, whereas optimized geometries came close for 27 Al with χ¯¯calc=(1.791±0.003) MHz, but not for 14 N with χ¯¯calc=−(19.5±3.3) kHz

    Similar works