thesis

Development of Deep Learning Methods for Magnetic Resonance Phase Imaging of Neurological Disease

Abstract

Magnetic resonance imaging (MRI) is a high-resolution, non-invasive medical imaging modality that is widely used in human brain. In recent years, susceptibility weighted imaging (SWI) and quantitative susceptibility mapping (QSM) have been proposed to utilize MR phase signal to generate contrast from tissue magnetic susceptibility and even quantify the property. On the other hand, deep learning, especially deep convolutional neural networks (DCNNs), have achieved state-of-the-art performances in numerous computer vision tasks and gained significant attention in the field of medical imaging in the recent years. This dissertation combined the idea of deep learning with the two MR phase imaging methods. To combined deep learning with SWI, we designed and trained a 3D deep residual network that can distinguish false positive detected candidates from cerebral microbleeds (CMBs) and built an automatic CMB detection pipeline with high performance. We further confirmed the generalizability of this deep learning-based pipeline using multiple dataset with different scan parameters and pathologies and provided lessons for application and generalization of generic deep learning based medical imaging methods.To combine deep learning with QSM, we developed a 3D U-Net based network that learns to perform dipole inversion from gold standard QSM acquired from data with multiple orientation. The model was further improved with adversarial training strategy and achieved significantly lower reconstruction error than traditional QSM algorithms. In addition, we also performed various background removal and dipole inversion algorithms on both brain tumor patients and healthy volunteers to study and compare their performances. The results could provide guidance on future application of QSM in different scenarios

    Similar works