Abstract

We study structural properties of the Lyapunov exponent γ\gamma and the density of states kk for ergodic (or just invariant) Jacobi matrices in a general framework. In this analysis, a central role is played by the function w=γ+iπkw=-\gamma+i\pi k as a conformal map between certain domains. This idea goes back to Marchenko and Ostrovskii, who used this device in their analysis of the periodic problem

    Similar works

    Full text

    thumbnail-image

    Available Versions