research

Radiant Heat Transfer to Absorbing Gases Enclosed Between Parallel Flat Plates with Flow and Conduction

Abstract

An analysis is presented for obtaining two-dimensional temperature profiles and heat transfer in a radiation-absorbing gray gas of uniform absorptivity under the combined influence of thermal radiation, conduction, and gas flow. The gas is enclosed in a channel of infinite width and finite length formed by two semi-infinite parallel flat plates. These plates are black emitting surfaces, and the ends of the channel are formed by porous black surfaces through which the gas can flow into or out of the channel. These porous black end surfaces are used to simulate the radiation environment external to the channel. First, results are obtained for heat transfer between the plates in the absence of both conduction and flow. These results are found to be in good agreement with those obtained for the same conditions by previous workers. Results are then presented for heat transfer between the plates for the case of a radiating and conducting, but stagnant, gas separating the plates. The effects of the interactions between radiation and conduction are discussed. It was found that the heat transfer for combined radiation and conduction in an absorbing gas is slightly greater than the sum for each process taken separately. Finally, results are given for heat transfer from the plates to a flowing, radiating gas in the absence of conduction. The two plates are at the same temperature, and the gas enters the channel with uniform velocity and temperature. The results obtained for this case indicate that the heat transferred to the flowing gas from the constant temperature surfaces goes through a maximum as the absorptivity of the gas increases. This is in qualitative agreement with earlier results obtained by other investigators. All the results are presented in terms of dimensionless parameters, for the sake of generality, and the derivation of the dimensionless parameters, which are indicative of the effects of conduction and flow is presented

    Similar works