We develop a scalable deep non-parametric generative model by augmenting deep
Gaussian processes with a recognition model. Inference is performed in a novel
scalable variational framework where the variational posterior distributions
are reparametrized through a multilayer perceptron. The key aspect of this
reformulation is that it prevents the proliferation of variational parameters
which otherwise grow linearly in proportion to the sample size. We derive a new
formulation of the variational lower bound that allows us to distribute most of
the computation in a way that enables to handle datasets of the size of
mainstream deep learning tasks. We show the efficacy of the method on a variety
of challenges including deep unsupervised learning and deep Bayesian
optimization