CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
A Direct, Quantitative Connection between Molecular Dynamics Simulations and Vibrational Probe Line Shapes
Authors
Bartosz Blasiak
Casey H. Londergan
+3 more
Joshua P. Layfield
Minhaeng Cho
Rosalind J. Xu
Publication date
1 May 2018
Publisher
AMER CHEMICAL SOC
Abstract
A quantitative connection between molecular dynamics simulations and vibrational spectroscopy of probe-labeled systems would enable direct translation of experimental data into structural and dynamical information. To constitute this connection, all-atom molecular dynamics (MD) simulations were performed for two SCN probe sites (solvent-exposed and buried) in a calmodulin-target peptide complex. Two frequency calculation approaches with substantial nonelectrostatic components, a quantum mechanics/molecular mechanics (QM/MM)-based technique and a solvatochromic fragment potential (SolEFP) approach, were used to simulate the infrared probe line shapes. While QM/MM results disagreed with experiment, SolEFP results matched experimental frequencies and line shapes and revealed the physical and dynamic bases for the observed spectroscopic behavior. The main determinant of the CN probe frequency is the exchange repulsion between the probe and its local structural neighbors, and there is a clear dynamic explanation for the relatively broad probe line shape observed at the “buried” probe site. This methodology should be widely applicable to vibrational probes in many environments. © XXXX American Chemical Societ
Similar works
Full text
Available Versions
IBS Publications Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pr.ibs.re.kr:8788114/5571
Last time updated on 06/02/2020