CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Influence of TiO2 Particle Size on Dye-Sensitized Solar Cells Employing an Organic Sensitizer and a Cobalt(III/II) Redox Electrolyte
Authors
Hyun S. Park
Jiho Kang
+7 more
Jin Kim
Jin Soo Kang
Jungjin Yoon
Juwon Jeong
Myeong Jae Lee
Yoon Jun Son
Yung-Eun Sung
Publication date
1 April 2018
Publisher
AMER CHEMICAL SOC
Abstract
Dye-sensitized solar cells (DSSCs) are highly efficient and reliable photovoltaic devices that are based on nanostructured semiconductor photoelectrodes. From their inception in 1991, colloidal TiO2 nanoparticles (NPs) with the large surface area have manifested the highest performances and the particle size of around 20 nm is generally regarded as the optimized condition. However, though there have been reports on the influences of particle sizes in conventional DSSCs employing iodide redox electrolyte, the size effects in DSSCs with the state-of-the-art cobalt electrolyte have not been investigated. In this research, systematic analyses on DSSCs with cobalt electrolytes are carried out by using various sizes of NPs (20-30 nm), and the highest performance is obtained in the case of 30 nm sized TiO2 NPs, indicating that there is a reversed power conversion efficiency trend when compared with those with the iodide counterpart. Detailed investigations on various factors - light harvesting, charge injection, dye regeneration, and charge collection - reveal that TiO2 particles with a size range of 20-30 nm do not have a notable difference in charge injection, dye regeneration, and even in light-harvesting efficiency. It is experimentally verified that the superior charge collection property is the sole origin of the higher performance, suggesting that charge collection should be prioritized for designing nanostructured TiO2 photoelectrodes for DSSCs employing cobalt redox electrolytes. © 2018 American Chemical Societ
Similar works
Full text
Available Versions
IBS Publications Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pr.ibs.re.kr:8788114/4551
Last time updated on 06/02/2020