Observation of Charge Transfer in Heterostructures Composed of MoSe2 Quantum Dots and a Monolayer of MoS2 or WSe2

Abstract

Monolayer transition metal dichalcogenides (TMDs) are atomically thin semiconductor films that are ideal platforms for the study and engineering of quantum heterostructures for optoelectronic applications. We present a simple method for the fabrication of TMD heterostructures containing MoSe2 quantum dots (QDS) and a MoS2 or WSe2, monolayer. The strong modification of photoluminescence and Raman spectra that includes the quenching of MoSe2 QDs and the varied spectral weights of trions for the MoS2 and WSe2 monolayers were observed, suggesting the charge transfer Occurring in these TMD heterostructures. Such optically active heterostructures, which can be conveniently fabricated by dispersing TMD QDs onto TMD monolayers, are likely to have various nanophotonic applications because of their versatile and controllable properties. © 2017 American Chemical Society91

    Similar works

    Full text

    thumbnail-image

    Available Versions