research

S = 3 Ground State for a Tetranuclear Mn^(IV)₄O₄ Complex Mimicking the S₃ State of the Oxygen Evolving Complex

Abstract

The S₃ state is currently the last observable intermediate prior to O–O bond formation at the oxygen-evolving complex (OEC) of Photosystem II, and its electronic structure has been assigned to a homovalent Mn^(IV)₄ core with an S = 3 ground state. While structural interpretations based on the EPR spectroscopic features of the S₃ state provide valuable mechanistic insight, corresponding synthetic and spectroscopic studies on tetranuclear complexes mirroring the Mn oxidation states of the S₃ state remain rare. Herein, we report the synthesis and characterization by XAS and multifrequency EPR spectroscopy of a Mn^(IV)₄O₄ cuboidal complex as a spectroscopic model of the S₃ state. Results show that this Mn^(IV)₄O₄ complex has an S = 3 ground state with isotropic ⁵⁵Mn hyperfine coupling constants of −75, −88, −91, and 66 MHz. These parameters are consistent with an αααβ spin topology approaching the trimer–monomer magnetic coupling model of pseudo-octahedral Mn^(IV) centers. Importantly, the spin ground state changes from S = 1/2 to S = 3 as the OEC is oxidized from the S₂ state to the S₃ state. This same spin state change is observed following oxidation of the previously reported Mn^(III)Mn^(IV)₃O₄ cuboidal complex to the Mn^(IV)₄O₄ complex described here. This sets a synthetic precedent for the observed low-spin to high-spin conversion in the OEC

    Similar works