research

Robust hybrid global asymptotic stabilization of rigid body dynamics using dual quaternions

Abstract

A hybrid feedback control scheme is proposed for stabilization of rigid body dynamics (pose and velocities) using unit dual quaternions, in which the dual quaternions and veloc- ities are used for feedback. It is well-known that rigid body attitude control is subject to topological constraints which often result in discontinuous control to avoid the unwinding phenomenon. In contrast, the hybrid scheme allows the controlled system to be robust in the presence of uncertainties, which would otherwise cause chattering about the point of discontinuous control while also ensuring acceptable closed-loop response characteristics. The stability of the closed-loop system is guaranteed through a Lyapunov analysis and the use of invariance principles for hybrid systems. Simulation results for a rigid body model are presented to illustrate the performance of the proposed hybrid dual quaternion feedback control scheme

    Similar works