research

Solution on the Bethe lattice of a hard core athermal gas with two kinds of particles

Abstract

Athermal lattice gases of particles with first neighbor exclusion have been studied for a long time as simple models exhibiting a fluid-solid transition. At low concentration the particles occupy randomly both sublattices, but as the concentration is increased one of the sublattices is occupied preferentially. Here we study a mixed lattice gas with excluded volume interactions only in the grand-canonical formalism with two kinds of particles: small ones, which occupy a single lattice site and large ones, which occupy one site and its first neighbors. We solve the model on a Bethe lattice of arbitrary coordination number qq. In the parameter space defined by the activities of both particles. At low values of the activity of small particles (z1z_1) we find a continuous transition from the fluid to the solid phase as the activity of large particles (z2z_2) is increased. At higher values of z1z_1 the transition becomes discontinuous, both regimes are separated by a tricritical point. The critical line has a negative slope at z1=0z_1=0 and displays a minimum before reaching the tricritical point, so that a reentrant behavior is observed for constant values of z2z_2 in the region of low density of small particles. The isobaric curves of the total density of particles as a function of z1z_1 (or z2z_2) show a minimum in the fluid phase.Comment: 18 pages, 5 figures, 1 tabl

    Similar works