Dynamic Allocation for Resource Protection in Decentralized Cloud Storage

Abstract

Decentralized Cloud Storage (DCS) networks represent an interesting solution for data storage and management. DCS networks rely on the voluntary effort of a considerable number of (possibly untrusted) nodes, which may dynamically join and leave the network at any time. To profitably rely on DCS for data storage, data owners therefore need solutions that guarantee confidentiality and availability of their data. In this paper, we present an approach enabling data owners to keep data confidentiality and availability under control, limiting the owners intervention with corrective actions when availability or confidentiality is at risk. Our approach is based on the combined adoption of AONT (All-Or-Nothing-Transform) and fountain codes. It provides confidentiality of outsourced data also against malicious coalitions of nodes, and guarantees data availability even in case of node failures. Our experimental evaluation clearly shows the benefits of using fountain codes with respect to other approaches adopted by current DCS networks

    Similar works