research

Extraction of the underlying structure of systematic risk from non-Gaussian multivariate financial time series using independent component analysis: Evidence from the Mexican stock exchange

Abstract

Regarding the problems related to multivariate non-Gaussianity of financial time series, i.e., unreliable results in extraction of underlying risk factors -via Principal Component Analysis or Factor Analysis-, we use Independent Component Analysis (ICA) to estimate the pervasive risk factors that explain the returns on stocks in the Mexican Stock Exchange. The extracted systematic risk factors are considered within a statistical definition of the Arbitrage Pricing Theory (APT), which is tested by means of a two-stage econometric methodology. Using the extracted factors, we find evidence of a suitable estimation via ICA and some results in favor of the APT.Peer ReviewedPostprint (published version

    Similar works