We discuss topological phase transitions in ultra-cold Fermi superfluids
induced by interactions and artificial spin orbit fields. We construct the
phase diagram for population imbalanced systems at zero and finite
temperatures, and analyze spectroscopic and thermodynamic properties to
characterize various phase transitions. For balanced systems, the evolution
from BCS to BEC superfluids in the presence of spin-orbit effects is only a
crossover as the system remains fully gapped, even though a triplet component
of the order parameter emerges. However, for imbalanced populations, spin-orbit
fields induce a triplet component in the order parameter that produces nodes in
the quasiparticle excitation spectrum leading to bulk topological phase
transitions of the Lifshitz type. Additionally a fully gapped phase exists,
where a crossover from indirect to direct gap occurs, but a topological
transition to a gapped phase possessing Majorana fermions edge states does not
occur.Comment: With no change in text, the labels in the figures are modifie