research

Optimal Deterministic Polynomial-Time Data Exchange for Omniscience

Abstract

We study the problem of constructing a deterministic polynomial time algorithm that achieves omniscience, in a rate-optimal manner, among a set of users that are interested in a common file but each has only partial knowledge about it as side-information. Assuming that the collective information among all the users is sufficient to allow the reconstruction of the entire file, the goal is to minimize the (possibly weighted) amount of bits that these users need to exchange over a noiseless public channel in order for all of them to learn the entire file. Using established connections to the multi-terminal secrecy problem, our algorithm also implies a polynomial-time method for constructing a maximum size secret shared key in the presence of an eavesdropper. We consider the following types of side-information settings: (i) side information in the form of uncoded fragments/packets of the file, where the users' side-information consists of subsets of the file; (ii) side information in the form of linearly correlated packets, where the users have access to linear combinations of the file packets; and (iii) the general setting where the the users' side-information has an arbitrary (i.i.d.) correlation structure. Building on results from combinatorial optimization, we provide a polynomial-time algorithm (in the number of users) that, first finds the optimal rate allocations among these users, then determines an explicit transmission scheme (i.e., a description of which user should transmit what information) for cases (i) and (ii)

    Similar works

    Full text

    thumbnail-image

    Available Versions