thesis

Towards Universal Object Detection

Abstract

Object detection is one of the most important and challenging research topics in computer vision. It is playing an important role in our everyday life and has many applications, e.g. surveillance, autonomous driving, robotics, drone, medical imaging, etc. The ultimate goal of object detection is a universal object detector that can work very well in any case under any condition like human vision system. However, there are multiple challenges on the universality of object detection, e.g. scale-variance, high-quality requirement, domain shift, computational constraint, etc. These will prevent the object detector from being widely used for various scales of objects, critical applications requiring extremely accurate localization, scenarios with changing domain priors, and diverse hardware settings. To address these challenges, multiple solutions have been proposed in this thesis. These include an efficient multi-scale architecture to achieve scale-invariant detection, a robust multi-stage framework effective for high-quality requirement, a cross-domain solution to extend the universality over various domains, and a design of complexity-aware cascades and a novel low-precision network to enhance the universality under different computational constraints. All these efforts have substantially improved the universality of object detection, and the advanced object detector can be applied to broader environments

    Similar works