Stem cell extracellular vesicles for neural regeneration

Abstract

In the last decade, multipotent mesenchymal stromal cells (MSCs) demonstrated a significant therapeutic efficacy, particularly in cell therapy approaches aiming at tissue regeneration. MSCs exert their action via trophic support, induction of angiogenesis, immunomodulation and reduction of necrosis at affected tissues. Importantly, these regenerative and protective properties are largely associated to MSC secretome. Unfortunately, cell-based approaches not always meet the criteria for a smooth translation to the clinic. For instance, the use of stem cells in pathologies with a very short therapeutic window, such as few hours, is not compatible with the requested minimal criteria for MSC release, before administration to the patient. Notwithstanding, in the regenerative medicine field, the MSC mechanism of action paradigm was recently extended to include the action of extracellular vesicles (EVs), which are cytoplasm-containing cellular bodies secreted by a wide range of cell types. Intriguingly, many studies reported that EVs generated by MSCs are able to recapitulate the majority of the regenerative properties of parental MSCs. Starting from these premises, the objectives of the present doctoral research project were: to address EV-mediated cell-to-cell communication as novel MSC mechanism of action; to address reprogrammed MSC-EV generation; to define, for the first time in the literature, stem cell EV molecular content (e.g.: miRNome), comparing reprogrammed to non-reprogrammed MSC-EVs; to challenge stem cell-EV therapeutic potential in a model of acute tissue damage, as a proof-of-concept for feasibility and effectiveness of a stem cell-based albeit cell-free regenerative strategy. Intriguingly, EVs may be produced in a ready-to-use formulation, so that clinicians could use them as soon as a therapeutic need arises, also in the case of an urgent one. In this way, EV-shuttled MSC regenerative properties could exert beneficial effects also on pathologies currently lacking any cell therapy option. To develop this innovative therapeutic strategy, MSCs were isolated from different tissues and their biological properties were evaluated in order to choose the MSC source most suitable for the implementation of the project. Thus, both MSC transcriptome and immunophenotype were addressed. MSCs from adult sources (e.g.: bone marrow) showed senescence-related features in vitro, correlated to donor’s age in vivo. On the other hand, MSCs from perinatal tissues (e.g.: cord blood) showed a phenotype more similar to that of pericytes, which are the in vivo progenitors of MSCs. Therefore, cord blood was chosen as MSC source, also in the prospective of clinical translation, since public banking of cord blood units for clinical use already exists worldwide. Next, thanks to an extended analysis of the stromal populations present in cord blood, a MSC subpopulation showing higher proliferation properties and significantly longer telomeres was isolated. In addition, the standard cord blood MSC isolation protocol was improved, leading to an efficiency of 80%. Eventually, MSC secretome-associated anti-inflammatory and anti-apoptotic properties were observed in vitro and in vivo. In order to investigate if EVs contributed to MSC paracrine properties, MSC-EV secretion and regenerative properties were assessed. The MSC-EV therapeutic effectiveness was challenged in an in vitro model of acute tissue damage. Intriguingly, MSC-EVs could rescue damage-induced cell mortality, showing the same protective effect of parental MSCs. In spite of the use of a high proliferative cord blood MSC subpopulation, primary cultures still show a limited lifespan. In order to increase their replicative potential and to better exploit their EV production, induced cellular reprogramming was tested on MSCs as an alternative to traditional immortalization techniques. In this way, MSC-derived cell lines endowed with unlimited lifespan were generated, and permanent modification of their genome was avoided. The next step was to confirm the generation of EVs from reprogrammed MSCs, since reprogramming drastically changes cell identity. Furthermore, the EV miRNome load of reprogrammed and non-reprogrammed MSCs was addressed. Importantly, the majority of miRNAs were common between the two samples, indicating that reprogramming did not change the EV miRNA content. This result could have relevant consequences on the functional features of reprogrammed MSC-EVs, since EV-mediated miRNA transfer from donor to target cells was proposed as one of MSC mechanisms of action. In the last part of this doctoral research, stem cell (non-reprogrammed and reprogrammed MSCs)-EV therapeutic effectiveness was addressed and compared to that of parental MSCs. In order to do that, an organotypic ex vivo mouse model of brain ischemia was used. This model recapitulated the modulation of some ischemic damage-related parameters, including increased secretion of inflammatory cytokines, high tissue necrosis and the impairment of neuronal and astrocytic cell populations. Therefore, this model mimicked early phase events of brain ischemia, whose thrombolytic clinical treatment must be administered within 3-6 hours of first signs of ischemia. Notably, stem cell-EVs were tested for the first time in this pathological context to verify their potential role in tissue regeneration. Strikingly, stem cell-EV administration to affected tissues showed significant neuroprotective properties, which were comparable to those of parental MSCs. Importantly, the ischemic damage-related parameters previously described were rescued. In particular, inflammatory-associated parameters underwent the most statistically significant decrease, showing levels similar to or better than those of the uninjured brain tissue. This is of uttermost importance, considering that chronic inflammation is detrimental to tissue regeneration. To conclude, the results of the present PhD thesis confirmed the feasibility of stem cell EV-based therapies in regenerative medicine approaches. In the future, this innovative EV therapy may be applied to pathological contexts currently without a cell therapy option. In the framework of advanced therapy medicinal products, the new drug would be the EVs, rather than the parental stem cells. Finally, EVs could play the role of ready-to-use anti-inflammatory molecule carriers, in order to guarantee a rapid therapeutic action for the regeneration of injured tissues

    Similar works