Correlation functions in Liouville theory are meromorphic functions of the
Liouville momenta, as is shown explicitly by the DOZZ formula for the
three-point function on the sphere. In a certain physical region, where a real
classical solution exists, the semiclassical limit of the DOZZ formula is known
to agree with what one would expect from the action of the classical solution.
In this paper, we ask what happens outside of this physical region. Perhaps
surprisingly we find that, while in some range of the Liouville momenta the
semiclassical limit is associated to complex saddle points, in general
Liouville's equations do not have enough complex-valued solutions to account
for the semiclassical behavior. For a full picture, we either must include
"solutions" of Liouville's equations in which the Liouville field is
multivalued (as well as being complex-valued), or else we can reformulate
Liouville theory as a Chern-Simons theory in three dimensions, in which the
requisite solutions exist in a more conventional sense. We also study the case
of "timelike" Liouville theory, where we show that a proposal of Al. B.
Zamolodchikov for the exact three-point function on the sphere can be computed
by the original Liouville path integral evaluated on a new integration cycle.Comment: 86 pages plus appendices, 9 figures, minor typos fixed, references
added, more discussion of the literature adde