research

Congruences for Wolstenholme primes

Abstract

A prime number pp is said to be a Wolstenholme prime if it satisfies the congruence (2pβˆ’1pβˆ’1)≑1  (β€Šmodβ€Šβ€‰β€‰p4){2p-1\choose p-1} \equiv 1 \,\,(\bmod{\,\,p^4}). For such a prime pp, we establish the expression for (2pβˆ’1pβˆ’1)  (β€Šmodβ€Šβ€‰β€‰p8){2p-1\choose p-1}\,\,(\bmod{\,\,p^8}) given in terms of the sums Ri:=βˆ‘k=1pβˆ’11/kiR_i:=\sum_{k=1}^{p-1}1/k^i (i=1,2,3,4,5,6)i=1,2,3,4,5,6). Further, the expression in this congruence is reduced in terms of the sums RiR_i (i=1,3,4,5i=1,3,4,5). Using this congruence, we prove that for any Wolstenholme prime, (2pβˆ’1pβˆ’1)≑1βˆ’2pβˆ‘k=1pβˆ’11kβˆ’2p2βˆ‘k=1pβˆ’11k2(modp7). {2p-1\choose p-1}\equiv 1 -2p \sum_{k=1}^{p-1}\frac{1}{k} -2p^2\sum_{k=1}^{p-1}\frac{1}{k^2}\pmod{p^7}. Moreover, using a recent result of the author \cite{Me}, we prove that the above congruence implies that a prime pp necessarily must be a Wolstenholme prime. Applying a technique of Helou and Terjanian \cite{HT}, the above congruence is given as the expression involving the Bernoulli numbers.Comment: pages 1

    Similar works

    Full text

    thumbnail-image

    Available Versions