Abstract

A cadmium tungstate crystal boule enriched in 116^{116}Cd to 82% with mass of 1868 g was grown by the low-thermal-gradient Czochralski technique. The isotopic composition of cadmium and the trace contamination of the crystal were estimated by High Resolution Inductively Coupled Plasma Mass-Spectrometry. The crystal scintillators produced from the boule were subjected to characterization that included measurements of transmittance and energy resolution. A low background scintillation detector with two 116^{116}CdWO4_4 crystal scintillators (586 g and 589 g) was developed. The detector was running over 1727 h deep underground at the Gran Sasso National Laboratories of the INFN (Italy), which allowed to estimate the radioactive contamination of the enriched crystal scintillators. The radiopurity of a third 116^{116}CdWO4_4 sample (326 g) was tested with the help of ultra-low background high purity germanium γ\gamma detector. Monte Carlo simulations of double β\beta processes in 116^{116}Cd were used to estimate the sensitivity of an experiment to search for double β\beta decay of 116^{116}Cd.Comment: 24 pages, 13 figures, 3 tables, accepted for publication on Journal of Instrumentatio

    Similar works