Leptonic decays of the Higgs boson in the ZZ* channel yield what is known as
the golden channel due to its clean signature and good total invariant mass
resolution. In addition, the full kinematic distribution of the decay products
can be reconstructed, which, nonetheless, is not taken into account in
traditional search strategy relying only on measurements of the total invariant
mass. In this work we implement a type of multivariate analysis known as the
matrix element method, which exploits differences in the full production and
decay matrix elements between the Higgs boson and the dominant irreducible
background from q bar{q} -> ZZ*. Analytic expressions of the differential
distributions for both the signal and the background are also presented. We
perform a study for the Large Hadron Collider at sqrt{s}=7 TeV for Higgs masses
between 175 and 350 GeV. We find that, with an integrated luminosity of 2.5
fb^-1 or higher, improvements in the order of 10 - 20 % could be obtained for
both discovery significance and exclusion limits in the high mass region, where
the differences in the angular correlations between signal and background are
most pronounced.Comment: 31 pages, 8 figures. v2: Minus signs in definitions of angles
corrected. Typos fixed. Reference added. Cosmetic changes to Figure 4.
Additional sentence added for clarificatio