Abstract

We present a rest-frame UV-optical stacked spectrum representative of massive quiescent galaxies at 1.010.81.010.8. The stack is constructed using VANDELS survey data, combined with new KMOS observations. We apply two independent full-spectral-fitting approaches, measuring a total metallicity, [Z/H]=0.13±0.08-0.13\pm0.08 with Bagpipes, and [Z/H]=0.04±0.140.04\pm0.14 with Alf, a fall of 0.20.3\sim0.2-0.3 dex compared with the local Universe. We also measure an iron abundance, [Fe/H] =0.18±0.08-0.18\pm0.08, a fall of 0.15\sim0.15 dex compared with the the local Universe. We measure the alpha enhancement via the magnesium abundance, obtaining [Mg/Fe]=0.23±0.23\pm0.12, consistent with similar-mass galaxies in the local Universe, indicating no evolution in the average alpha enhancement of log(M/M)=11(M_*/\rm{M_\odot})=11 quiescent galaxies over the last 8\sim8 Gyr. This suggests the very high alpha enhancements recently reported for several bright z12z\sim1-2 quiescent galaxies are due to their extreme masses, log(M/M)11.5(M_*/\rm{M_\odot})\gtrsim11.5, rather than being typical of the z1z\gtrsim1 population. The metallicity evolution we observe with redshift (falling [Z/H], [Fe/H], constant [Mg/Fe]) is consistent with recent studies. We recover a mean stellar age of 2.50.4+0.62.5^{+0.6}_{-0.4} Gyr, corresponding to a formation redshift, z_\rm{form}=2.4^{+0.6}_{-0.3}. Recent studies have obtained varying average formation redshifts for z1z\gtrsim1 massive quiescent galaxies, and, as these studies report consistent metallicities, we identify different star-formation-history models as the most likely cause. Larger spectroscopic samples from upcoming ground-based instruments will provide precise constraints on ages and metallicities at z1z\gtrsim1. Combining these with precise JWST z>2z>2 quiescent-galaxy stellar-mass functions will provide an independent test of formation redshifts derived from spectral fitting.Comment: 16 pages, 3 figures, accepted for publication in Ap

    Similar works