research

Increased Cycling Efficiency and Rate Capability of Copper-coated Silicon Anodes in Lithium-ion Batteries

Abstract

Cycling efficiency and rate capability of porous copper-coated, amorphous silicon thin-film negative electrodes are compared to equivalent silicon thin-film electrodes in lithium-ion batteries. The presence of a copper layer coated on the active material plays a beneficial role in increasing the cycling efficiency and the rate capability of silicon thin-film electrodes. Between 3C and C/8 discharge rates, the available cell energy decreased by 8% and 18% for 40 nm copper-coated silicon and equivalent silicon thin-film electrodes, respectively. Copper-coated silicon thin-film electrodes also show higher cycling efficiency, resulting in lower capacity fade, than equivalent silicon thin-film electrodes. We believe that copper appears to act as a glue that binds the electrode together and prevents the electronic isolation of silicon particles, thereby decreasing capacity loss. Rate capability decreases significantly at higher copper-coating thicknesses as the silicon active-material is not accessed, suggesting that the thickness and porosity of the copper coating need to be optimized for enhanced capacity retention and rate capability in this system.Comment: 15 pages, 6 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions