The construction of torsion-free abelian groups with prescribed endomorphism
rings starting with Corner's seminal work is a well-studied subject in the
theory of abelian groups. Usually these construction work by adding elements
from a (topological) completion in order to get rid of (kill) unwanted
homomorphisms. The critical part is to actually prove that every unwanted
homomorphism can be killed by adding a suitable element. We will demonstrate
that some of those constructions can be significantly simplified by choosing
the elements at random. As a result, the endomorphism ring will be almost
surely prescribed, i.e., with probability one.Comment: 12 pages, submitted to the special volume of Contemporary Mathematics
for the proceedings of the conference Group and Model Theory, 201