thesis

Meta-heuristic & hyper-heuristic scheduling tools for biopharmaceutical production

Abstract

The manufacturing of biopharmaceuticals requires substantial investments and necessitates long-term planning. Complicating the task of determining optimal production plans are large portfolios of products and facilities which limit the tractability of exact solution methods, and uncertainties & stochastic events which often render plans obsolete when reality deviates from the expectation. This thesis therefore describes decisional tools that are able to cope with these complexities. First, a capacity planning problem for a network of facilities and multiple products was tackled. Inspired by meta-heuristic approaches to job shop scheduling, a tailored construction heuristic that builds a production plan based on a sequence — optimised by a genetic algorithm—of product demands was proposed. Comparisons to a mathematical programming model demonstrated its competitiveness on certain scenarios and its applicability to a multi-objective problem. Next, a custom object-oriented model was introduced for a manufacturing scheduling system that utilised a failure-prone perfusion-based bioprocess. With this, process design decisions such as cell culture run time and process configuration, and single-product facility scheduling strategies were evaluated whilst incorporating simulations of stochastic failure events and uncertain demand. This model was then incorporated into a larger hyper-heuristic to determine optimal scheduling policies for a multi-product problem. Various policy representations are tested and a few policies are adapted from the literature to fit this specific problem. In addition, a novel policy utilising a look-ahead heuristic is proposed. The benefit of parameter tuning using evolutionary algorithms is demonstrated and shows that tuned policies perform much better than a policy that estimates parameters based on service level considerations. In addition, the disadvantages of relying on a fixed or rigid production sequence policy in the face of uncertainty is highlighted

    Similar works