Extensive first principles calculations are carried out to investigate
gold-promoted TiO2(110) surfaces in terms of structure optimizations,
electronic structure analyses, ab initio thermodynamics calculations of surface
phase diagrams, and ab initio molecular dynamics simulations. All computations
rely on density functional theory in the generalized gradient approximation
(PBE) and account for on-site Coulomb interactions via inclusion of a Hubbard
correction, PBE+U, where U is computed from linear response theory. This
approach is validated by investigating the interaction between TiO2(110)
surfaces and typical probe species (H, H2O, CO). Relaxed structures and binding
energies are compared to both data from the literature and plain PBE results.
The main focus of the study is on the properties of gold-promoted titania
surfaces and their interactions with CO. Both PBE+U and PBE optimized
structures of Au adatoms adsorbed on stoichiometric and reduced TiO2 surfaces
are computed, along with their electronic structure. The charge rearrangement
induced by the adsorbates at the metal/oxide contact are also analyzed and
discussed. By performing PBE+U ab initio molecular dynamics simulations, it is
demonstrated that the diffusion of Au adatoms on the stoichiometric surface is
highly anisotropic. The metal atoms migrate either along the top of the
bridging oxygen rows, or around the area between these rows, from one bridging
position to the next along the [001] direction. Approximate ab initio
thermodynamics predicts that under O-rich conditions, structures obtained by
substituting a Ti5c atom with an Au atom are thermodynamically stable over a
wide range of temperatures and pressures.Comment: 20 pages, 12 figures, accepted for publication in Phys. Rev.