We provide a set of rules to define several spinful quantum Hall model
states. The method extends the one known for spin polarized states. It is
achieved by specifying an undressed root partition, a squeezing procedure and
rules to dress the configurations with spin. It applies to both the
excitation-less state and the quasihole states. In particular, we show that the
naive generalization where one preserves the spin information during the
squeezing sequence, may fail. We give numerous examples such as the Halperin
states, the non-abelian spin-singlet states or the spin-charge separated
states. The squeezing procedure for the series (k=2,r) of spinless quantum Hall
states, which vanish as r powers when k+1 particles coincide, is generalized to
the spinful case. As an application of our method, we show that the counting
observed in the particle entanglement spectrum of several spinful states
matches the one obtained through the root partitions and our rules. This
counting also matches the counting of quasihole states of the corresponding
model Hamiltonians, when the latter is available.Comment: 19 pages, 7 figures; v2: minor changes, and added references.
Mathematica packages are available for downloa