We study the anisotropic in-plane optical conductivity of detwinned
Ba(Fe1-xCox)2As2 single crystals for x=0, 2.5% and 4.5% in a broad energy range
(3 meV-5 eV) across their structural and magnetic transitions. For temperatures
below the Neel transition, the topology of the reconstructed Fermi surface,
combined with the distinct behavior of the scattering rates, determines the
anisotropy of the low frequency optical response. For the itinerant charge
carriers, we are able to disentangle the evolution of the Drude weights and
scattering rates and to observe their enhancement along the orthorhombic
antiferromagnetic a-axis with respect to the ferromagnetic b-axis. For
temperatures above Ts, uniaxial stress leads to a finite in-plane anisotropy.
The anisotropy of the optical conductivity, leading to a significant dichroism,
extends to high frequencies in the mid- and near-infrared regions. The
temperature dependence of the dichroism at all dopings scales with the
anisotropy ratio of the dc conductivity, suggesting the electronic nature of
the structural transition. Our findings bear testimony to a large nematic
susceptibility that couples very effectively to the uniaxial lattice strain. In
order to clarify the subtle interplay of magnetism and Fermi surface topology
we compare our results with theoretical calculations obtained from density
functional theory within the full-potential linear augmented plane-wave method.Comment: 17 pages, 9 figure