We consider the problem of locating a black hole in synchronous anonymous
networks using finite state agents. A black hole is a harmful node in the
network that destroys any agent visiting that node without leaving any trace.
The objective is to locate the black hole without destroying too many agents.
This is difficult to achieve when the agents are initially scattered in the
network and are unaware of the location of each other. Previous studies for
black hole search used more powerful models where the agents had non-constant
memory, were labelled with distinct identifiers and could either write messages
on the nodes of the network or mark the edges of the network. In contrast, we
solve the problem using a small team of finite-state agents each carrying a
constant number of identical tokens that could be placed on the nodes of the
network. Thus, all resources used in our algorithms are independent of the
network size. We restrict our attention to oriented torus networks and first
show that no finite team of finite state agents can solve the problem in such
networks, when the tokens are not movable. In case the agents are equipped with
movable tokens, we determine lower bounds on the number of agents and tokens
required for solving the problem in torus networks of arbitrary size. Further,
we present a deterministic solution to the black hole search problem for
oriented torus networks, using the minimum number of agents and tokens