Sequencing of ore columns for planning of large underground mines

Abstract

This is the final version. Available on open access from Wroclaw University of Science and Technology via the DOI in this recordBlock caving is an underground mining technique which extracts ore from the base, rather than from the top, of typically massive deposits. Mining infrastructure is developed below the deposit before extraction commences. A network of tunnels provides access to a collection of drawpoints from which ore is mucked and hauled. With large deposits, not all drawpoints are developed simultaneously and the opening of drawpoints is sequenced to facilitate orderly extraction of ore columns above drawpoints. Sequencing fixes the initiation point for the entire block cave, or a part of it, as well as identifying the direction of cave advancement. The sequence of opening drawpoints influences the mine economics and is an integral aspect of planning a block cave mine. This paper discusses the optimisation of sequencing based on the net present value associated with extraction over the life-of-mine. It is shown that the maximum attainable net present value is obtained by a sequence in which ore columns are ranked in descending order of value. If significant variation of grade is present inside columns, an iterative procedure is given which corrects the sequence which yields the maximum net present value. The sequence with maximum net present value may not be practical or attractive from a caving perspective. Systematic design of sequences which permit orderly development of a block cave is discussed. To provide context, the net present value obtained from these feasible sequences is compared with the maximum attainable net present value. It is shown that the best feasible sequences in terms of net present value are preferentially initiated in zones with columns of high-grade ore.Rio Tinto Technical Services Lt

    Similar works