For an affine spherical homogeneous space G/H of a connected semisimple
algebraic group G, we consider the factorization morphism by the action on G/H
of a maximal unipotent subgroup of G. We prove that this morphism is
equidimensional if and only if the weight semigroup of G/H satisfies some
simple condition.Comment: v2: title and abstract changed; v3: 16 pages, minor correction