We consider a so-called random obstacle model for the motion of a
hypersurface through a field of random obstacles, driven by a constant driving
field. The resulting semi-linear parabolic PDE with random coefficients does
not admit a global nonnegative stationary solution, which implies that an
interface that was flat originally cannot get stationary. The absence of global
stationary solutions is shown by proving lower bounds on the growth of
stationary solutions on large domains with Dirichlet boundary conditions.
Difficulties arise because the random lower order part of the equation cannot
be bounded uniformly