Abstract

It is shown that most of the well-known basic results for Sobolev-Slobodeckii and Bessel potential spaces, known to hold on bounded smooth domains in Rn\mathbb{R}^n, continue to be valid on a wide class of Riemannian manifolds with singularities and boundary, provided suitable weights, which reflect the nature of the singularities, are introduced. These results are of importance for the study of partial differential equations on piece-wise smooth domains.Comment: 37 pages, 1 figure, final version, augmented by additional references; to appear in Math. Nachrichte

    Similar works

    Full text

    thumbnail-image