The traditional view that the physical properties of a simple liquid are
determined primarily by its repulsive forces was recently challenged by
Berthier and Tarjus, who showed that in some cases ignoring the attractions
leads to large errors in the dynamics [L. Berthier and G. Tarjus, Phys. Rev.
Lett. 103, 170601 (2009); J. Chem. Phys. 134, 214503 (2011)]. We present
simulations of the standard Lennard-Jones liquid at several condensed-fluid
state points, including a fairly low density state and a very high density
state, as well as simulations of the Kob-Andersen binary Lennard-Jones mixture
at several temperatures. By varying the range of the forces, results for the
thermodynamics, dynamics, and structure show that the determining factor for
getting the correct statics and dynamics is not whether or not the attractive
forces {\it per se} are included in the simulations. What matters is whether or
not interactions are included from all particles within the first coordination
shell (FCS) - the attractive forces can thus be ignored, but only at extremely
high densities. The recognition of the importance of a local shell in condensed
fluids goes back to van der Waals; our results confirm this idea and thereby
the basic picture of the old hole- and cell theories for simple condensed
fluids