Model checking of open pushdown systems (OPD) w.r.t. standard branching
temporal logics (pushdown module checking or PMC) has been recently
investigated in the literature, both in the context of environments with
perfect and imperfect information about the system (in the last case, the
environment has only a partial view of the system's control states and stack
content). For standard CTL, PMC with imperfect information is known to be
undecidable. If the stack content is assumed to be visible, then the problem is
decidable and 2EXPTIME-complete (matching the complexity of PMC with perfect
information against CTL). The decidability status of PMC with imperfect
information against CTL restricted to the case where the depth of the stack
content is visible is open. In this paper, we show that with this restriction,
PMC with imperfect information against CTL remains undecidable. On the other
hand, we individuate an interesting subclass of OPDS with visible stack content
depth such that PMC with imperfect information against the existential fragment
of CTL is decidable and in 2EXPTIME. Moreover, we show that the program
complexity of PMC with imperfect information and visible stack content against
CTL is 2EXPTIME-complete (hence, exponentially harder than the program
complexity of PMC with perfect information, which is known to be
EXPTIME-complete).Comment: In Proceedings GandALF 2011, arXiv:1106.081