Context: Numerical simulations of stellar convection and photospheres have
been developed to the point where detailed shapes of observed spectral lines
can be explained. Stellar atmospheres are very complex, and very different
physical regimes are present in the convection zone, photosphere, chromosphere,
transition region and corona. To understand the details of the atmosphere it is
necessary to simulate the whole atmosphere since the different layers interact
strongly. These physical regimes are very diverse and it takes a highly
efficient massively parallel numerical code to solve the associated equations.
Aims: The design, implementation and validation of the massively parallel
numerical code Bifrost for simulating stellar atmospheres from the convection
zone to the corona.
Methods: The code is subjected to a number of validation tests, among them
the Sod shock tube test, the Orzag-Tang colliding shock test, boundary
condition tests and tests of how the code treats magnetic field advection,
chromospheric radiation, radiative transfer in an isothermal scattering
atmosphere, hydrogen ionization and thermal conduction.
Results: Bifrost completes the tests with good results and shows near linear
efficiency scaling to thousands of computing cores