Journal ArticleTar sand deposits in the state of Utah contain more than 25 billion bbl of in-place bitumen. Although 30 times smaller than the well-known Athabasca tar sands, Utah tar sands do represent a significant domestic energy resource comparable to the national crude oil reserves (31.3 billion bbl). Based upon a detailed analysis of the physical and chemical properties of both the bitumen and the sand, a hot-water separation process for Utah tar sands is currently being developed in our laboratories at the University of Utah. This process involves intense agitation of the tar sand in a hot caustic solution and subsequent separation of the bitumen by a modified froth flotation technique. Experimental results with an Asphalt Ridge, Utah, tar sand sample indicated that percent solids and caustic concentration were the two most important variables controlling the performance of the digestion stage. These variables were identified by means of an experimental factorial design, in which coefficients of separation greater than 0.90 were realized. Although preliminary in nature, the experimental evidence gathered in this investigation seems to indicate that a hot-water separation process for Utah tar sands would allow for the efficient utilization of this important energy resource