Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling

Abstract

Journal ArticleAs clock frequency increases and feature size decreases, clock distribution and wire delays present a growing challenge to the designers of singly-clocked, globally synchronous systems. We describe an alternative approach, which we call a Multiple Clock Domain (MCD) processor in which the chip is divided into several (coarse-grained) clock domains, within which independent voltage and frequency scaling can be performed. Boundaries between domains are chosen to exploit existing queues, thereby minimizing inter-domain synchronization costs. We propose four clock domains, corresponding to the front end (including LI instruction cache), integer units, floating point units, and load-store units (including Ll data cache and L2 cache). We evaluate this design using a simulation infrastructure based on SimpleScalar and Wattch. In an attempt to quantify potential energy savings independent of any particular on-line control strategy, we use of-line analysis of traces from a single-speed run of each of our benchmark applications to identify profitable reconfiguration points for a subsequent dynamic scaling run. Dynamic runs incorporate a detailed model of inter-domain synchronization delays, with latencies for intra-domain scaling similar to the whole-chip scaling latencies of Intel XScale and Transmeta LongRun technologies. Using applications from the MediaBench, Olden, and SPEC2000 benchmark suites, we obtain an average energy-delay product improvement of 20% with MCD compared to a modest 3% savings from voltage scaling a single clock and voltage system

    Similar works