Robust solid modeling by avoiding redundancy for manifold objects in boundary representation

Abstract

Journal ArticleThis paper describes a new approach to the robustness problem in solid modeling. We identify as t h e main cause of t h e lack of robustness that interdependent topological relations are derived from approximate data. Disregarding the interdependencies very likely violates basic properties, such as reflexivity, and transitivity, resulting in invalid data representations, such as dangling edges, missing faces, etc. We show that the boundary of manifold objects can be represented without redundant relations which avoids inconsistencies. An algorithm for regularized set operations for manifold solids which is based on the principle of avoiding and eliminating redundancy is described. This algorithm has been implemented for objects bounded by planar and natural quadric surfaces; it handles coincidence and incidence cases between surfaces and curves robustly

    Similar works