On synthesizing systolic arrays from recurrence equations with linear dependencies

Abstract

Journal ArticleWe present a technique for synthesizing systolic architectures from Recurrence Equations. A class of such equations (Recurrence Equations with Linear Dependencies) is defined and and the problem of mapping such equations onto a two dimensional architecture is studied. We show that such a mapping is provided by means of a linear allocation and timing function. An important result is that under such a mapping the dependencies remain linear. After obtaining a two-dimensional architecture by applying such a mapping, a systolic array can be derived if t h e communication can be spatially and temporally localized. We show that a simple test consisting of finding the zeroes of a matrix is sufficient to determine whether this localization can be achieved by pipelining and give a construction that generates the array when such a pipelining is possible. The technique is illustrated by automatically deriving a well known systolic array for factoring a band matrix into lower and upper triangular factors

    Similar works