slides

Fault-tolerant Algorithms for Tick-Generation in Asynchronous Logic: Robust Pulse Generation

Abstract

Today's hardware technology presents a new challenge in designing robust systems. Deep submicron VLSI technology introduced transient and permanent faults that were never considered in low-level system designs in the past. Still, robustness of that part of the system is crucial and needs to be guaranteed for any successful product. Distributed systems, on the other hand, have been dealing with similar issues for decades. However, neither the basic abstractions nor the complexity of contemporary fault-tolerant distributed algorithms match the peculiarities of hardware implementations. This paper is intended to be part of an attempt striving to overcome this gap between theory and practice for the clock synchronization problem. Solving this task sufficiently well will allow to build a very robust high-precision clocking system for hardware designs like systems-on-chips in critical applications. As our first building block, we describe and prove correct a novel Byzantine fault-tolerant self-stabilizing pulse synchronization protocol, which can be implemented using standard asynchronous digital logic. Despite the strict limitations introduced by hardware designs, it offers optimal resilience and smaller complexity than all existing protocols.Comment: 52 pages, 7 figures, extended abstract published at SSS 201

    Similar works

    Full text

    thumbnail-image

    Available Versions