research

Preprocessing for Automating Early Detection of Cervical Cancer

Abstract

Uterine Cervical Cancer is one of the most common forms of cancer in women worldwide. Most cases of cervical cancer can be prevented through screening programs aimed at detecting precancerous lesions. During Digital Colposcopy, colposcopic images or cervigrams are acquired in raw form. They contain specular reflections which appear as bright spots heavily saturated with white light and occur due to the presence of moisture on the uneven cervix surface and. The cervix region occupies about half of the raw cervigram image. Other parts of the image contain irrelevant information, such as equipment, frames, text and non-cervix tissues. This irrelevant information can confuse automatic identification of the tissues within the cervix. Therefore we focus on the cervical borders, so that we have a geometric boundary on the relevant image area. Our novel technique eliminates the SR, identifies the region of interest and makes the cervigram ready for segmentation algorithms.Comment: 15th International Conference on Information Visualisation (Track: 8th International Conference BioMedical Visualization) at London, UK (IEEE Computer Society

    Similar works

    Full text

    thumbnail-image

    Available Versions