research

Uniform Approximation from Symbol Calculus on a Spherical Phase Space

Abstract

We use symbol correspondence and quantum normal form theory to develop a more general method for finding uniform asymptotic approximations. We then apply this method to derive a result we announced in an earlier paper, namely, the uniform approximation of the 6j6j-symbol in terms of the rotation matrices. The derivation is based on the Stratonovich-Weyl symbol correspondence between matrix operators and functions on a spherical phase space. The resulting approximation depends on a canonical, or area preserving, map between two pairs of intersecting level sets on the spherical phase space.Comment: 18 pages, 5 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions