The mesoscale model Meso-NH is used to simulate the optical turbulence at Mt
Graham (Arizona, USA), site of the Large Binocular Telescope. Measurements of
the CN2-profiles obtained with a generalized scidar from 41 nights are used to
calibrate and quantify the model's ability to reconstruct the optical
turbulence. The measurements are distributed over different periods of the
year, permitting us to study the model's performance in different seasons. A
statistical analysis of the simulations is performed for all the most important
astroclimatic parameters: the CN2-profiles, the seeing {\epsilon}, the
isoplanatic angle {\theta}0 and the wavefront coherence time {\tau}0. The model
shows a general good ability in reconstructing the morphology of the optical
turbulence (the shape of the vertical distribution of CN2) as well as the
strength of all the integrated astroclimatic parameters. The relative error
(with respect to measurements) of the averaged seeing on the whole atmosphere
for the whole sample of 41 nights is within 9.0 %. The median value of the
relative error night by night is equal to 18.7 %, so that the model still
maintains very good performances. Comparable percentages are observed in
partial vertical slabs (free atmosphere and boundary layer) and in different
seasons (summer and winter). We prove that the most urgent problem, at present,
is to increase the ability of the model in reconstructing very weak and very
strong turbulence conditions in the high atmosphere. This mainly affects the
model's performances for the isoplanatic angle predictions, for which the
median value of the relative error night by night is equal to 35.1 %. No major
problems are observed for the other astroclimatic parameters. A variant to the
standard calibration method is tested but we find that it does not provide
better results, confirming the solid base of the standard method.Comment: 12 pages, 12 figures. The definitive version can be found at:
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2010.18097.x/abstrac