We classify the possible shapes of minimal free resolutions over a regular
local ring. This illustrates the existence of free resolutions whose Betti
numbers behave in surprisingly pathological ways. We also give an asymptotic
characterization of the possible shapes of minimal free resolutions over
hypersurface rings. Our key new technique uses asymptotic arguments to study
formal Q-Betti sequences.Comment: 14 pages, 1 figure; v2: sections have been reorganized substantially
and exposition has been streamline