Abstract

Injections in Jupiter's magnetosphere are a dynamic process associated with the inward transport of hot plasma, containing ions and electrons with energies into the keV or even MeV. Previous studies have demonstrated a relationship between electron injections observed in Jupiter's equatorial magnetosphere and transient aurora near Jupiter's main emission [e.g. Mauk et al. 2002]. Here, we present observations from several instruments on Juno between ~03:00 to 05:00 UT on DOY 86 2017 that link electron injection signatures observed at high-latitudes to bright UV emissions near Jupiter's main aurora. These injections, observed at magnetic latitudes of ~50oN and jovicentric distances of ~5.5 – 8 jovian radii (1 RJ ~ 71,400 km), were identified by sudden intensity depletions and enhancements in the low ( 50 keV) energy electrons. They are likely connected to several transient UV emission features observed at jovigraphic latitudes of ~55o – 60oN, lasting for tens of minutes, with high color ratios consistent with an energetic electron source. These combined observations allow us to directly compare the measured in-situ properties of electrons associated with injection events (pitch angle distributions, characteristic energy, energy flux) to the remote observations of the UV emissions that they produce

    Similar works

    Full text

    thumbnail-image