On the length of group laws

Abstract

Let C be the class of finite nilpotent, solvable, symmetric, simple or semi-simple groups and n be a positive integer. We discuss the following question on group laws: What is the length of the shortest non-trivial law holding for all finite groups from the class C of order less than or equal to n?:Introduction 0 Essentials from group theory 1 The two main tools 1.1 The commutator lemma 1.2 The extension lemma 2 Nilpotent and solvable groups 2.1 Definitions and basic properties 2.2 Short non-trivial words in the derived series of F_2 2.3 Short non-trivial words in the lower central series of F_2 2.4 Laws for finite nilpotent groups 2.5 Laws for finite solvable groups 3 Semi-simple groups 3.1 Definitions and basic facts 3.2 Laws for the symmetric group S_n 3.3 Laws for simple groups 3.4 Laws for finite linear groups 3.5 Returning to semi-simple groups 4 The final conclusion Index BibliographySei C die Klasse der endlichen nilpotenten, auflösbaren, symmetrischen oder halbeinfachen Gruppen und n eine positive ganze Zahl. We diskutieren die folgende Frage über Gruppengesetze: Was ist die Länge des kürzesten nicht-trivialen Gesetzes, das für alle endlichen Gruppen der Klasse C gilt, welche die Ordnung höchstens n haben?:Introduction 0 Essentials from group theory 1 The two main tools 1.1 The commutator lemma 1.2 The extension lemma 2 Nilpotent and solvable groups 2.1 Definitions and basic properties 2.2 Short non-trivial words in the derived series of F_2 2.3 Short non-trivial words in the lower central series of F_2 2.4 Laws for finite nilpotent groups 2.5 Laws for finite solvable groups 3 Semi-simple groups 3.1 Definitions and basic facts 3.2 Laws for the symmetric group S_n 3.3 Laws for simple groups 3.4 Laws for finite linear groups 3.5 Returning to semi-simple groups 4 The final conclusion Index Bibliograph

    Similar works